2 research outputs found

    Fabrication of multilayers electrodes and electrolyte via screen printing for metal supported solid oxide fuel cell

    Get PDF
    Metal-Supported Solid Oxide Fuel Cell (MS-SOFC) were produced using a manual screen-printing method on 430 stainless steel (SS430) substrates. Each of MS-SOFC sample was fabricated by using manual screen printing with two different mesh screens which are 305 and 355. The fabrication of NiO-GDC composite anode powder was done by mixing 60wt% NiO and 40wt% GDC. Meanwhile, 50wt% LSCF and 50wt% GDC was mixed to produce LSCF-GDC composite cathode powder. NiO�GDC, LSCF-GDC and GDC powders went through calcination in the furnace at 950℃ for 2 hours. MS-SOFC samples with a different number of repetitions during the screen-printing process were sintered at 900℃ for 90 minutes. In this study, the phase analysis was conducted via X-Ray Diffraction (XRD) method for commercial powder and composite powders. A good XRD pattern was obtained without the presence of any secondary peak in composite anode and cathode powder. The XRD data obtained were analysed to obtain the lattice structure and crystallise size for all the commercial and composite powder. 24.59 nm, 24.38 nm, 13.34 nm are the average crystallise size for NiO, GDC and LSCF, respectively. Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS) were used to identify the thickness and distribution of elements on each MS-SOFC layer. As a result, the SOFC component layers fabricated by screen printed using 305-mesh screen at 10 times number of printings was selected as the ideal MS-SOFC sample. This is because the thickness of the layers obtained is lower compared to layers from mesh screens 305 and 355 at 15 and 20 times the number of printings which is 11.8 μm, 11.9 μm and 18.2 μm for anode, electrolyte and cathode, respectively. Thin electrode layer will produce low polarization resistance and can improve the SOFC performance itself

    Alat pemungut tandan kelapa sawit darjah kebebasan

    Get PDF
    Kelapa sawit merupakan tanaman yang menyumbang kepada industri penghasilan minyak di dunia seperti minyak masak, minyak industri, dan minyak bahan bakar (biodiesal). Pulangan dari sektor pertanian khususnya kelapa sawit sangat menguntungkan. Kini ramai petani telah bertukar ke tanaman kelapa sawit. Indonesia merupakan pengeluar minyak kelapa sawit terbesar di dunia [1]. Dengan terdapatnya pembukaan ladang sawit secara besar-besaran maka banyaklah syarikat-syarikat pertanian mula mencipta alat atau mesin yang baik untuk mencepatkan proses memetik dan mengeluarkan sawit dari ladang. Namun alatan yang lebih mesra pengguna dilihat tidak dipandang serius. Atas isu ini timbul idea mencipta alat pemungut tandan kelapa sawit darjah kebebasan. Semua sedia maklum untuk mengeluarkan sawit dari ladang perlunya meletakan tandan sawit ke dalam kereta sorong terlebih dahulu.Untuk meletakan sawit ke dalam kereta sorong T-shape palm fruit shank diperlukan. Pekebun akan mengangkat sawit yang telah dipetik dari pokok menggunakan alatan tersebut.Tanpa disedari alatan ini membahayakan pekebun dan membebankan. Pekebun memerlukan tenaga yang banyak untuk mengangkat tandan sawit yang amat berat ke dalam kereta sorong. Selain itu, mengangkat bebanan yang berat dalam kuantiti yang banyak menyebabkan sakit dibahagian tulang belakang pekebun. Di samping itu, mata alat yang tajam dan terdedah meningkatkan risiko kecederaan pekebun. Duri pada buah sawit juga bahaya pada pekebun
    corecore